AlphaMask

class AlphaMask[source]

Bases: supervisely.geometry.bitmap.Bitmap

AlphaMask geometry for a single Label. AlphaMask object is immutable.

Parameters
data : np.ndarray

AlphaMask mask data. Must be a numpy array with values in range [0, 255].

origin : PointLocation, optional

PointLocation: top, left corner of AlphaMask. Position of the AlphaMask within image.

sly_id : int, optional

AlphaMask ID in Supervisely server.

class_id : int, optional

ID of ObjClass to which AlphaMask belongs.

labeler_login : str, optional

Login of the user who created AlphaMask.

updated_at : str, optional

Date and Time when AlphaMask was modified last. Date Format: Year:Month:Day:Hour:Minute:Seconds. Example: ‘2021-01-22T19:37:50.158Z’.

created_at : str, optional

Date and Time when AlphaMask was created. Date Format is the same as in “updated_at” parameter.

extra_validation : bool, optional

If True, additional validation is performed. Throws a ValueError if values of the data are not in the range [0, 255]. If True it will affect performance.

Raises

ValueError, if data values are not in the range [0, 255].

Usage example
import supervisely as sly

# Create simple alpha mask:
mask = np.array([[0, 0, 0, 0, 0],
                 [0, 50, 50, 50, 0],
                 [0, 50, 0, 50, 0],
                 [0, 50, 50, 50, 0],
                 [0, 0, 0, 0, 0]], dtype=np.uint8)

figure = sly.AlphaMask(mask)

origin = figure.origin.to_json()
print(json.dumps(origin, indent=4))
# Output: {
#     "points": {
#         "exterior": [
#             [
#                 1,
#                 1
#             ]
#         ],
#         "interior": []
#     }

# Create alpha mask from PNG image:
img = sly.imaging.image.read(os.path.join(os.getcwd(), 'black_white.png'))
mask = img[:, :, 3]
figure = sly.AlphaMask(mask)

Methods

allowed_transforms

base64_2_data

Convert base64 encoded string to numpy array.

bitwise_mask

Make bitwise operations between a given numpy array and Bitmap.

clone

Clone from GEOMETRYYY

config_from_json

config_to_json

convert

crop

Crops current Bitmap.

data_2_base64

Convert numpy array to base64 encoded string.

draw

param bitmap

np.ndarray

draw_contour

Draws the figure contour on a given bitmap canvas :param bitmap: np.ndarray :param color: [R, G, B] :param thickness: (int) :param config: drawing config specific to a concrete subclass, e.g.

fliplr

Flip current Bitmap in horizontal.

flipud

Flip current Bitmap in vertical.

from_json

Convert a json dict to BitmapBase.

from_path

Read alpha_channel from image by path.

geometry_name

get_mask

Returns 2D boolean mask of the geometry.

name

Same as geometry_name(), but shorter.

relative_crop

Crops object like "crop" method, but return results with coordinates relative to rect :param rect: :return: list of Geometry

resize

Resizes current Bitmap.

rotate

Rotates current AlphaMask.

scale

Scale current Bitmap.

skeletonize

Compute the skeleton, medial axis transform or morphological thinning of Bitmap.

to_bbox

Create Rectangle object from current Bitmap.

to_contours

Get list of contours in Bitmap.

to_json

Convert the BitmapBase to a json dict.

translate

Translate current Bitmap.

validate

Attributes

area

AlphaMask area.

data

Get mask data of Bitmap.

origin

Position of the Bitmap within image.

classmethod allowed_transforms()[source]
static base64_2_data(s)[source]

Convert base64 encoded string to numpy array. Supports both compressed and uncompressed masks.

Parameters
s : str

Input base64 encoded string.

Returns

numpy array

Return type

np.ndarray

Usage example
import supervisely as sly

encoded_string = 'eJzrDPBz5+WS4mJgYOD19HAJAtLMIMwIInOeqf8BUmwBPiGuQPr///9Lb86/C2QxlgT5BTM4PLuRBuTwebo4hlTMSa44sKHhISMDuxpTYrr03F6gDIOnq5/LOqeEJgDM5ht6'
figure_data = sly.AlphaMask.base64_2_data(encoded_string)
print(figure_data)

uncompressed_string = 'iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA'
mask = sly.AlphaMask.base64_2_data(uncompressed_string)
print(mask)
bitwise_mask(full_target_mask, bit_op)

Make bitwise operations between a given numpy array and Bitmap.

Parameters
full_target_mask : np.ndarray

Input numpy array.

bit_op : Numpy logical operation

Type of bitwise operation(and, or, not, xor), uses numpy logic functions.

Returns

Bitmap object or empty list

Return type

Bitmap or list

Usage example
import supervisely as sly

mask = np.array([[0, 0, 0, 0, 0],
                [0, 1, 1, 1, 0],
                [0, 1, 0, 1, 0],
                [0, 1, 1, 1, 0],
                [0, 0, 0, 0, 0]], dtype=np.bool_)

figure = sly.Bitmap(mask)

array = np.array([[0, 0, 0, 0, 0],
                 [0, 1, 1, 1, 0],
                 [0, 0, 1, 0, 0],
                 [0, 0, 1, 0, 0],
                 [0, 0, 0, 0, 0]], dtype=np.bool_)

bitwise_figure = figure.bitwise_mask(array, np.logical_and)
print(bitwise_figure.data)
# Output:
# [[ True  True  True]
#  [False False False]
#  [False  True False]]
clone()

Clone from GEOMETRYYY

crop(rect)

Crops current Bitmap.

Parameters
rect : Rectangle

Rectangle object for cropping.

Returns

List of Bitmaps

Return type

List[Bitmap]

Usage Example
crop_figures = figure.crop(sly.Rectangle(1, 1, 300, 350))
static data_2_base64(mask)[source]

Convert numpy array to base64 encoded string.

Parameters
mask : np.ndarray

Bool numpy array.

Returns

Base64 encoded string

Return type

str

Usage example
import supervisely as sly

address = 'https://app.supervise.ly/'
token = 'Your Supervisely API Token'
api = sly.Api(address, token)

# Get annotation from API
meta_json = api.project.get_meta(PROJECT_ID)
meta = sly.ProjectMeta.from_json(meta_json)
ann_info = api.annotation.download(IMAGE_ID)
ann = sly.Annotation.from_json(ann_info.annotation, meta)

# Get AlphaMask from annotation
for label in ann.labels:
    if type(label.geometry) == sly.AlphaMask:
        figure = label.geometry

encoded_string = sly.AlphaMask.data_2_base64(figure.data)
print(encoded_string)
# 'eJzrDPBz5+WS4mJgYOD19HAJAtLMIMwIInOeqf8BUmwBPiGuQPr///9Lb86/C2QxlgT5BTM4PLuRBuTwebo4hlTMSa44sKHhISMDuxpTYrr03F6gDIOnq5/LOqeEJgDM5ht6'
draw(bitmap, color, thickness=1, config=None)
Parameters
bitmap

np.ndarray

color

[R, G, B]

thickness

used only in Polyline and Point

config

drawing config specific to a concrete subclass, e.g. per edge colors

draw_contour(bitmap, color, thickness=1, config=None)

Draws the figure contour on a given bitmap canvas :param bitmap: np.ndarray :param color: [R, G, B] :param thickness: (int) :param config: drawing config specific to a concrete subclass, e.g. per edge colors

fliplr(img_size)

Flip current Bitmap in horizontal.

Parameters
img_size : Tuple[int, int]

Annotation.img_size which belongs Bitmap.

Returns

BitmapBase object

Return type

BitmapBase

Usage Example
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable
height, width = 300, 400
fliplr_figure = figure.fliplr((height, width))
flipud(img_size)

Flip current Bitmap in vertical.

Parameters
img_size : Tuple[int, int]

Annotation.img_size which belongs Bitmap.

Returns

BitmapBase object

Return type

BitmapBase

Usage Example
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable
height, width = 300, 400
flipud_figure = figure.flipud((height, width))
classmethod from_json(json_data)

Convert a json dict to BitmapBase. Read more about Supervisely format.

Parameters
data : dict

Bitmap in json format as a dict.

Returns

BitmapBase object

Return type

BitmapBase

Usage example
import supervisely as sly

figure_json = {
    "bitmap": {
        "origin": [1, 1],
        "data": "eJzrDPBz5+WS4mJgYOD19HAJAtLMIMwIInOeqf8BUmwBPiGuQPr///9Lb86/C2QxlgT5BTM4PLuRBuTwebo4hlTMSa44sKHhISMDuxpTYrr03F6gDIOnq5/LOqeEJgDM5ht6"
    },
    "shape": "bitmap",
    "geometryType": "bitmap"
}

figure = sly.Bitmap.from_json(figure_json)
classmethod from_path(path)[source]

Read alpha_channel from image by path.

Parameters
path : str

Path to image

Returns

AlphaMask

Return type

AlphaMask

static geometry_name()[source]
get_mask(img_size)

Returns 2D boolean mask of the geometry. With shape as img_size (height, width) and filled with True values inside the geometry and False values outside. dtype = np.bool shape = img_size

Parameters
img_size : Tuple[int, int]

size of the image (height, width)

Returns

2D boolean mask of the geometry

Return type

np.ndarray

classmethod name()

Same as geometry_name(), but shorter. In order to make the code more concise.

Returns

string with name of geometry

relative_crop(rect)

Crops object like “crop” method, but return results with coordinates relative to rect :param rect: :return: list of Geometry

resize(in_size, out_size)

Resizes current Bitmap.

Parameters
in_size : Tuple[int, int]

Input image size (height, width) to which Bitmap belongs.

out_size : Tuple[int, int]

Output image size (height, width) to which Bitmap belongs.

Returns

Bitmap object

Return type

Bitmap

Usage Example
in_height, in_width = 800, 1067
out_height, out_width = 600, 800
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable
resize_figure = figure.resize((in_height, in_width), (out_height, out_width))
rotate(rotator)[source]

Rotates current AlphaMask.

Parameters
rotator : ImageRotator

ImageRotator for AlphaMask rotation.

Returns

AlphaMask object

Return type

AlphaMask

Usage Example
import supervisely as sly
from supervisely.geometry.image_rotator import ImageRotator

height, width = ann.img_size
rotator = ImageRotator((height, width), 25)
# Remember that AlphaMask class object is immutable, and we need to assign new instance of AlphaMask to a new variable
rotate_figure = figure.rotate(rotator)
scale(factor)

Scale current Bitmap.

Parameters
factor : float

Scale parameter.

Returns

BitmapBase object

Return type

BitmapBase

Usage Example
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable
scale_figure = figure.scale(0.75)
skeletonize(method_id)

Compute the skeleton, medial axis transform or morphological thinning of Bitmap.

Parameters
method_id : SkeletonizeMethod

Method to convert bool numpy array.

Returns

Bitmap object

Return type

Bitmap

Usage example
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable
skeleton_figure = figure.skeletonize(SkeletonizeMethod.SKELETONIZE)
med_ax_figure = figure.skeletonize(SkeletonizeMethod.MEDIAL_AXIS)
thin_figure = figure.skeletonize(SkeletonizeMethod.THINNING)
to_bbox()

Create Rectangle object from current Bitmap.

Returns

Rectangle object

Return type

Rectangle

Usage Example
rectangle = figure.to_bbox()
to_contours()

Get list of contours in Bitmap.

Returns

List of Polygon objects

Return type

List[Polygon]

Usage example
figure_contours = figure.to_contours()
to_json()

Convert the BitmapBase to a json dict. Read more about Supervisely format.

Returns

Json format as a dict

Return type

dict

Usage example
import supervisely as sly

mask = np.array([[0, 0, 0, 0, 0],
                 [0, 1, 1, 1, 0],
                 [0, 1, 0, 1, 0],
                 [0, 1, 1, 1, 0],
                 [0, 0, 0, 0, 0]], dtype=np.bool_)

figure = sly.Bitmap(mask)
figure_json = figure.to_json()
print(json.dumps(figure_json, indent=4))
# Output: {
#    "bitmap": {
#        "origin": [1, 1],
#        "data": "eJzrDPBz5+WS4mJgYOD19HAJAtLMIMwIInOeqf8BUmwBPiGuQPr///9Lb86/C2QxlgT5BTM4PLuRBuTwebo4hlTMSa44sKHhISMDuxpTYrr03F6gDIOnq5/LOqeEJgDM5ht6"
#    },
#    "shape": "bitmap",
#    "geometryType": "bitmap"
# }
translate(drow, dcol)

Translate current Bitmap.

Parameters
drow : int

Horizontal shift.

dcol : int

Vertical shift.

Returns

BitmapBase object

Return type

BitmapBase

Usage Example
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable
translate_figure = figure.translate(150, 250)
property area

AlphaMask area.

Returns

Area of current AlphaMask

Return type

float

Usage example
print(figure.area)
# Output: 88101.0
property data

Get mask data of Bitmap.

Returns

Data of Bitmap.

Return type

np.ndarray

property origin

Position of the Bitmap within image.

Returns

Top, left corner of Bitmap.

Return type

PointLocation