AlphaMask¶
- class AlphaMask[source]¶
Bases:
supervisely.geometry.bitmap.Bitmap
AlphaMask geometry for a single
Label
.AlphaMask
object is immutable.- Parameters
- data : np.ndarray
AlphaMask mask data. Must be a numpy array with values in range [0, 255].
- origin : PointLocation, optional
PointLocation
: top, left corner of AlphaMask. Position of the AlphaMask within image.- sly_id : int, optional
AlphaMask ID in Supervisely server.
- class_id : int, optional
ID of
ObjClass
to which AlphaMask belongs.- labeler_login : str, optional
Login of the user who created AlphaMask.
- updated_at : str, optional
Date and Time when AlphaMask was modified last. Date Format: Year:Month:Day:Hour:Minute:Seconds. Example: ‘2021-01-22T19:37:50.158Z’.
- created_at : str, optional
Date and Time when AlphaMask was created. Date Format is the same as in “updated_at” parameter.
- extra_validation : bool, optional
If True, additional validation is performed. Throws a ValueError if values of the data are not in the range [0, 255]. If True it will affect performance.
- Raises
ValueError
, if data values are not in the range [0, 255].- Usage example
import supervisely as sly # Create simple alpha mask: mask = np.array([[0, 0, 0, 0, 0], [0, 50, 50, 50, 0], [0, 50, 0, 50, 0], [0, 50, 50, 50, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) figure = sly.AlphaMask(mask) origin = figure.origin.to_json() print(json.dumps(origin, indent=4)) # Output: { # "points": { # "exterior": [ # [ # 1, # 1 # ] # ], # "interior": [] # } # Create alpha mask from PNG image: img = sly.imaging.image.read(os.path.join(os.getcwd(), 'black_white.png')) mask = img[:, :, 3] figure = sly.AlphaMask(mask)
Methods
Convert base64 encoded string to numpy array.
Make bitwise operations between a given numpy array and Bitmap.
Clone from GEOMETRYYY
config_from_json
config_to_json
convert
Crops current Bitmap.
Convert numpy array to base64 encoded string.
- param bitmap
np.ndarray
Draws the figure contour on a given bitmap canvas :param bitmap: np.ndarray :param color: [R, G, B] :param thickness: (int) :param config: drawing config specific to a concrete subclass, e.g.
Flip current Bitmap in horizontal.
Flip current Bitmap in vertical.
Convert a json dict to BitmapBase.
Read alpha_channel from image by path.
Returns 2D boolean mask of the geometry.
Same as geometry_name(), but shorter.
Crops object like "crop" method, but return results with coordinates relative to rect :param rect: :return: list of Geometry
Resizes current Bitmap.
Rotates current AlphaMask.
Scale current Bitmap.
Compute the skeleton, medial axis transform or morphological thinning of Bitmap.
Create
Rectangle
object from current Bitmap.Get list of contours in Bitmap.
Convert the BitmapBase to a json dict.
Translate current Bitmap.
validate
Attributes
AlphaMask area.
Get mask data of Bitmap.
Position of the Bitmap within image.
- static base64_2_data(s)[source]¶
Convert base64 encoded string to numpy array. Supports both compressed and uncompressed masks.
- Parameters
- s : str
Input base64 encoded string.
- Returns
numpy array
- Return type
np.ndarray
- Usage example
import supervisely as sly encoded_string = 'eJzrDPBz5+WS4mJgYOD19HAJAtLMIMwIInOeqf8BUmwBPiGuQPr///9Lb86/C2QxlgT5BTM4PLuRBuTwebo4hlTMSa44sKHhISMDuxpTYrr03F6gDIOnq5/LOqeEJgDM5ht6' figure_data = sly.AlphaMask.base64_2_data(encoded_string) print(figure_data) uncompressed_string = 'iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA' mask = sly.AlphaMask.base64_2_data(uncompressed_string) print(mask)
- bitwise_mask(full_target_mask, bit_op)¶
Make bitwise operations between a given numpy array and Bitmap.
- Parameters
- full_target_mask : np.ndarray
Input numpy array.
- bit_op : Numpy logical operation
Type of bitwise operation(and, or, not, xor), uses numpy logic functions.
- Returns
Bitmap object or empty list
- Return type
Bitmap
orlist
- Usage example
import supervisely as sly mask = np.array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=np.bool_) figure = sly.Bitmap(mask) array = np.array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0]], dtype=np.bool_) bitwise_figure = figure.bitwise_mask(array, np.logical_and) print(bitwise_figure.data) # Output: # [[ True True True] # [False False False] # [False True False]]
- clone()¶
Clone from GEOMETRYYY
- crop(rect)¶
Crops current Bitmap.
- Parameters
- rect : Rectangle
Rectangle object for cropping.
- Returns
List of Bitmaps
- Return type
- Usage Example
crop_figures = figure.crop(sly.Rectangle(1, 1, 300, 350))
- static data_2_base64(mask)[source]¶
Convert numpy array to base64 encoded string.
- Parameters
- mask : np.ndarray
Bool numpy array.
- Returns
Base64 encoded string
- Return type
- Usage example
import supervisely as sly address = 'https://app.supervise.ly/' token = 'Your Supervisely API Token' api = sly.Api(address, token) # Get annotation from API meta_json = api.project.get_meta(PROJECT_ID) meta = sly.ProjectMeta.from_json(meta_json) ann_info = api.annotation.download(IMAGE_ID) ann = sly.Annotation.from_json(ann_info.annotation, meta) # Get AlphaMask from annotation for label in ann.labels: if type(label.geometry) == sly.AlphaMask: figure = label.geometry encoded_string = sly.AlphaMask.data_2_base64(figure.data) print(encoded_string) # 'eJzrDPBz5+WS4mJgYOD19HAJAtLMIMwIInOeqf8BUmwBPiGuQPr///9Lb86/C2QxlgT5BTM4PLuRBuTwebo4hlTMSa44sKHhISMDuxpTYrr03F6gDIOnq5/LOqeEJgDM5ht6'
-
draw(bitmap, color, thickness=
1
, config=None
)¶ - Parameters
- bitmap
np.ndarray
- color
[R, G, B]
- thickness
used only in Polyline and Point
- config
drawing config specific to a concrete subclass, e.g. per edge colors
-
draw_contour(bitmap, color, thickness=
1
, config=None
)¶ Draws the figure contour on a given bitmap canvas :param bitmap: np.ndarray :param color: [R, G, B] :param thickness: (int) :param config: drawing config specific to a concrete subclass, e.g. per edge colors
- fliplr(img_size)¶
Flip current Bitmap in horizontal.
- Parameters
- img_size : Tuple[int, int]
Annotation.img_size
which belongs Bitmap.
- Returns
BitmapBase object
- Return type
BitmapBase
- Usage Example
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable height, width = 300, 400 fliplr_figure = figure.fliplr((height, width))
- flipud(img_size)¶
Flip current Bitmap in vertical.
- Parameters
- img_size : Tuple[int, int]
Annotation.img_size
which belongs Bitmap.
- Returns
BitmapBase object
- Return type
BitmapBase
- Usage Example
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable height, width = 300, 400 flipud_figure = figure.flipud((height, width))
- classmethod from_json(json_data)¶
Convert a json dict to BitmapBase. Read more about Supervisely format.
- Parameters
- data : dict
Bitmap in json format as a dict.
- Returns
BitmapBase object
- Return type
BitmapBase
- Usage example
import supervisely as sly figure_json = { "bitmap": { "origin": [1, 1], "data": "eJzrDPBz5+WS4mJgYOD19HAJAtLMIMwIInOeqf8BUmwBPiGuQPr///9Lb86/C2QxlgT5BTM4PLuRBuTwebo4hlTMSa44sKHhISMDuxpTYrr03F6gDIOnq5/LOqeEJgDM5ht6" }, "shape": "bitmap", "geometryType": "bitmap" } figure = sly.Bitmap.from_json(figure_json)
- get_mask(img_size)¶
Returns 2D boolean mask of the geometry. With shape as img_size (height, width) and filled with True values inside the geometry and False values outside. dtype = np.bool shape = img_size
- classmethod name()¶
Same as geometry_name(), but shorter. In order to make the code more concise.
- Returns
string with name of geometry
- relative_crop(rect)¶
Crops object like “crop” method, but return results with coordinates relative to rect :param rect: :return: list of Geometry
- resize(in_size, out_size)¶
Resizes current Bitmap.
- Parameters
- Returns
Bitmap object
- Return type
Bitmap
- Usage Example
in_height, in_width = 800, 1067 out_height, out_width = 600, 800 # Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable resize_figure = figure.resize((in_height, in_width), (out_height, out_width))
- rotate(rotator)[source]¶
Rotates current AlphaMask.
- Parameters
- rotator : ImageRotator
ImageRotator
for AlphaMask rotation.
- Returns
AlphaMask object
- Return type
- Usage Example
import supervisely as sly from supervisely.geometry.image_rotator import ImageRotator height, width = ann.img_size rotator = ImageRotator((height, width), 25) # Remember that AlphaMask class object is immutable, and we need to assign new instance of AlphaMask to a new variable rotate_figure = figure.rotate(rotator)
- scale(factor)¶
Scale current Bitmap.
- Parameters
- factor : float
Scale parameter.
- Returns
BitmapBase object
- Return type
BitmapBase
- Usage Example
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable scale_figure = figure.scale(0.75)
- skeletonize(method_id)¶
Compute the skeleton, medial axis transform or morphological thinning of Bitmap.
- Parameters
- method_id : SkeletonizeMethod
Method to convert bool numpy array.
- Returns
Bitmap object
- Return type
Bitmap
- Usage example
# Remember that Bitmap class object is immutable, and we need to assign new instance of Bitmap to a new variable skeleton_figure = figure.skeletonize(SkeletonizeMethod.SKELETONIZE) med_ax_figure = figure.skeletonize(SkeletonizeMethod.MEDIAL_AXIS) thin_figure = figure.skeletonize(SkeletonizeMethod.THINNING)
- to_bbox()¶
Create
Rectangle
object from current Bitmap.- Returns
Rectangle object
- Return type
- Usage Example
rectangle = figure.to_bbox()
- to_contours()¶
Get list of contours in Bitmap.
- Returns
List of Polygon objects
- Return type
- Usage example
figure_contours = figure.to_contours()
- to_json()¶
Convert the BitmapBase to a json dict. Read more about Supervisely format.
- Returns
Json format as a dict
- Return type
- Usage example
import supervisely as sly mask = np.array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=np.bool_) figure = sly.Bitmap(mask) figure_json = figure.to_json() print(json.dumps(figure_json, indent=4)) # Output: { # "bitmap": { # "origin": [1, 1], # "data": "eJzrDPBz5+WS4mJgYOD19HAJAtLMIMwIInOeqf8BUmwBPiGuQPr///9Lb86/C2QxlgT5BTM4PLuRBuTwebo4hlTMSa44sKHhISMDuxpTYrr03F6gDIOnq5/LOqeEJgDM5ht6" # }, # "shape": "bitmap", # "geometryType": "bitmap" # }
- translate(drow, dcol)¶
Translate current Bitmap.
- property area¶
AlphaMask area.
- Returns
Area of current AlphaMask
- Return type
- Usage example
print(figure.area) # Output: 88101.0
- property data¶
Get mask data of Bitmap.
- Returns
Data of Bitmap.
- Return type
np.ndarray
- property origin¶
Position of the Bitmap within image.
- Returns
Top, left corner of Bitmap.
- Return type