Source code for supervisely.api.annotation_api

# coding: utf-8
"""download/upload/edit :class:`Annotation<supervisely.annotation.annotation.Annotation>`"""

# docs
from __future__ import annotations

import asyncio
import json
from collections import defaultdict
from copy import deepcopy
from typing import Any, Callable, Dict, List, Literal, NamedTuple, Optional, Union

from tqdm import tqdm

from supervisely._utils import batched
from supervisely.annotation.annotation import Annotation, AnnotationJsonFields
from supervisely.annotation.label import Label, LabelJsonFields
from supervisely.api.module_api import ApiField, ModuleApi
from supervisely.geometry.alpha_mask import AlphaMask
from supervisely.geometry.constants import BITMAP
from supervisely.project.project_meta import ProjectMeta


class AnnotationInfo(NamedTuple):
    """
    AnnotationInfo
    """

    image_id: int
    image_name: str
    annotation: dict
    created_at: str
    updated_at: str

    def to_json(self) -> Dict[str, Any]:
        """
        Convert AnnotationInfo to JSON format.

        :return: AnnotationInfo in JSON format.
        :rtype: :class:`Dict[str, Any]`
        """
        return {
            ApiField.IMAGE_ID: self.image_id,
            ApiField.IMAGE_NAME: self.image_name,
            ApiField.ANNOTATION: self.annotation,
            ApiField.CREATED_AT: self.created_at,
            ApiField.UPDATED_AT: self.updated_at,
        }


[docs]class AnnotationApi(ModuleApi): """ Annotation for a single image. :class:`AnnotationApi<AnnotationApi>` object is immutable. :param api: API connection to the server. :type api: Api :Usage example: .. code-block:: python import os from dotenv import load_dotenv import supervisely as sly # Load secrets and create API object from .env file (recommended) # Learn more here: https://developer.supervisely.com/getting-started/basics-of-authentication if sly.is_development(): load_dotenv(os.path.expanduser("~/supervisely.env")) api = sly.Api.from_env() # Pass values into the API constructor (optional, not recommended) # api = sly.Api(server_address="https://app.supervise.ly", token="4r47N...xaTatb") dataset_id = 254737 ann_infos = api.annotation.get_list(dataset_id) """
[docs] @staticmethod def info_sequence(): """ NamedTuple AnnotationInfo information about Annotation. :Example: .. code-block:: python AnnotationInfo(image_id=121236919, image_name='IMG_1836', annotation={'description': '', 'tags': [], 'size': {'height': 800, 'width': 1067}, 'objects': []}, created_at='2019-12-19T12:06:59.435Z', updated_at='2021-02-06T11:07:26.080Z') """ return [ ApiField.IMAGE_ID, ApiField.IMAGE_NAME, ApiField.ANNOTATION, ApiField.CREATED_AT, ApiField.UPDATED_AT, ]
[docs] @staticmethod def info_tuple_name(): """ NamedTuple name - **AnnotationInfo**. """ return "AnnotationInfo"
[docs] def get_list( self, dataset_id: int, filters: Optional[List[Dict[str, str]]] = None, progress_cb: Optional[Union[tqdm, Callable]] = None, force_metadata_for_links: Optional[bool] = True, ) -> List[AnnotationInfo]: """ Get list of information about all annotations for a given dataset. :param dataset_id: Dataset ID in Supervisely. :type dataset_id: int :param filters: List of parameters to sort output Annotations. :type filters: List[dict], optional :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm or callable, optional :return: Information about Annotations. See :class:`info_sequence<info_sequence>` :rtype: :class:`List[AnnotationInfo]` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() dataset_id = 254737 ann_infos = api.annotation.get_list(dataset_id) print(json.dumps(ann_infos[0], indent=4)) # Output: [ # 121236918, # "IMG_0748.jpeg", # { # "description": "", # "tags": [], # "size": { # "height": 800, # "width": 1067 # }, # "objects": [] # }, # "2019-12-19T12:06:59.435Z", # "2021-02-06T11:07:26.080Z" # ] ann_infos_filter = api.annotation.get_list(dataset_id, filters={ 'field': 'name', 'operator': '=', 'value': 'IMG_1836' }) print(json.dumps(ann_infos_filter, indent=4)) # Output: [ # 121236919, # "IMG_1836", # { # "description": "", # "tags": [], # "size": { # "height": 800, # "width": 1067 # }, # "objects": [] # }, # "2019-12-19T12:06:59.435Z", # "2021-02-06T11:07:26.080Z" # ] """ return self.get_list_all_pages( "annotations.list", { ApiField.DATASET_ID: dataset_id, ApiField.FILTER: filters or [], ApiField.FORCE_METADATA_FOR_LINKS: force_metadata_for_links, }, progress_cb, )
[docs] def get_list_generator( self, dataset_id: int, filters: Optional[List[Dict[str, str]]] = None, progress_cb: Optional[Union[tqdm, Callable]] = None, batch_size: Optional[int] = 50, force_metadata_for_links: Optional[bool] = True, ) -> List[AnnotationInfo]: """ Get list of information about all annotations for a given dataset. :param dataset_id: Dataset ID in Supervisely. :type dataset_id: int :param filters: List of parameters to sort output Annotations. :type filters: List[dict], optional :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm or callable, optional :return: Information about Annotations. See :class:`info_sequence<info_sequence>` :rtype: :class:`List[AnnotationInfo]` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() dataset_id = 254737 ann_infos = api.annotation.get_list(dataset_id) print(json.dumps(ann_infos[0], indent=4)) # Output: [ # 121236918, # "IMG_0748.jpeg", # { # "description": "", # "tags": [], # "size": { # "height": 800, # "width": 1067 # }, # "objects": [] # }, # "2019-12-19T12:06:59.435Z", # "2021-02-06T11:07:26.080Z" # ] ann_infos_filter = api.annotation.get_list(dataset_id, filters={ 'field': 'name', 'operator': '=', 'value': 'IMG_1836' }) print(json.dumps(ann_infos_filter, indent=4)) # Output: [ # 121236919, # "IMG_1836", # { # "description": "", # "tags": [], # "size": { # "height": 800, # "width": 1067 # }, # "objects": [] # }, # "2019-12-19T12:06:59.435Z", # "2021-02-06T11:07:26.080Z" # ] """ data = { ApiField.DATASET_ID: dataset_id, ApiField.FILTER: filters or [], ApiField.FORCE_METADATA_FOR_LINKS: force_metadata_for_links, ApiField.PAGINATION_MODE: ApiField.TOKEN, } if batch_size is not None: data[ApiField.PER_PAGE] = batch_size else: # use default value on instance (learn in API documentation) # 20k for instance # 50 by default in SDK pass return self.get_list_all_pages_generator("annotations.list", data, progress_cb)
[docs] def download( self, image_id: int, with_custom_data: Optional[bool] = False, force_metadata_for_links: Optional[bool] = True, ) -> AnnotationInfo: """ Download AnnotationInfo by image ID from API. :param image_id: Image ID in Supervisely. :type image_id: int :param with_custom_data: Include custom data in the response. :type with_custom_data: bool, optional :param force_metadata_for_links: Force metadata for links. :type force_metadata_for_links: bool, optional :return: Information about Annotation. See :class:`info_sequence<info_sequence>` :rtype: :class:`AnnotationInfo` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() image_id = 121236918 ann_info = api.annotation.download(image_id) print(json.dumps(ann_info, indent=4)) # Output: [ # 121236918, # "IMG_0748.jpeg", # { # "description": "", # "tags": [], # "size": { # "height": 800, # "width": 1067 # }, # "objects": [] # }, # "2019-12-19T12:06:59.435Z", # "2021-02-06T11:07:26.080Z" # ] """ response = self._api.post( "annotations.info", { ApiField.IMAGE_ID: image_id, ApiField.WITH_CUSTOM_DATA: with_custom_data, ApiField.FORCE_METADATA_FOR_LINKS: force_metadata_for_links, ApiField.INTEGER_COORDS: False, }, ) result = response.json() # Convert annotation to pixel coordinate system result[ApiField.ANNOTATION] = Annotation._to_pixel_coordinate_system_json( result[ApiField.ANNOTATION] ) # check if there are any AlphaMask geometries in the batch additonal_geometries = defaultdict(int) labels = result[ApiField.ANNOTATION][AnnotationJsonFields.LABELS] for idx, label in enumerate(labels): if label[LabelJsonFields.GEOMETRY_TYPE] == AlphaMask.geometry_name(): figure_id = label[LabelJsonFields.ID] additonal_geometries[figure_id] = idx # if so, download them separately and update the annotation if len(additonal_geometries) > 0: figure_ids = list(additonal_geometries.keys()) figures = self._api.image.figure.download_geometries_batch(figure_ids) for figure_id, geometry in zip(figure_ids, figures): label_idx = additonal_geometries[figure_id] labels[label_idx].update({BITMAP: geometry}) ann_info = self._convert_json_info(result) return ann_info
[docs] def download_json( self, image_id: int, with_custom_data: Optional[bool] = False, force_metadata_for_links: Optional[bool] = True, ) -> Dict[str, Union[str, int, list, dict]]: """ Download Annotation in json format by image ID from API. :param image_id: Image ID in Supervisely. :type image_id: int :param with_custom_data: Include custom data in the response. :type with_custom_data: bool, optional :param force_metadata_for_links: Force metadata for links. :type force_metadata_for_links: bool, optional :return: Annotation in json format :rtype: :class:`dict` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() image_id = 121236918 ann_json = api.annotation.download_json(image_id) print(ann_json) # Output: { # "description": "", # "tags": [], # "size": { # "height": 800, # "width": 1067 # }, # "objects": [] # } """ return self.download( image_id=image_id, with_custom_data=with_custom_data, force_metadata_for_links=force_metadata_for_links, ).annotation
[docs] def download_batch( self, dataset_id: int, image_ids: List[int], progress_cb: Optional[Union[tqdm, Callable]] = None, with_custom_data: Optional[bool] = False, force_metadata_for_links: Optional[bool] = True, ) -> List[AnnotationInfo]: """ Get list of AnnotationInfos for given dataset ID from API. :param dataset_id: Dataset ID in Supervisely. :type dataset_id: int :param image_ids: List of integers. :type image_ids: List[int] :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm :param with_custom_data: Include custom data in the response. :type with_custom_data: bool, optional :param force_metadata_for_links: Force metadata for links. :type force_metadata_for_links: bool, optional :return: Information about Annotations. See :class:`info_sequence<info_sequence>` :rtype: :class:`List[AnnotationInfo]` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() dataset_id = 254737 image_ids = [121236918, 121236919] p = tqdm(desc="Annotations downloaded: ", total=len(image_ids)) ann_infos = api.annotation.download_batch(dataset_id, image_ids, progress_cb=p) # Output: # {"message": "progress", "event_type": "EventType.PROGRESS", "subtask": "Annotations downloaded: ", "current": 0, "total": 2, "timestamp": "2021-03-16T15:20:06.168Z", "level": "info"} # {"message": "progress", "event_type": "EventType.PROGRESS", "subtask": "Annotations downloaded: ", "current": 2, "total": 2, "timestamp": "2021-03-16T15:20:06.510Z", "level": "info"} Optimizing the download process by using the context to avoid redundant API calls.: # 1. Download the project meta project_id = api.dataset.get_info_by_id(dataset_id).project_id project_meta = api.project.get_meta(project_id) # 2. Use the context to avoid redundant API calls dataset_id = 254737 image_ids = [121236918, 121236919] with sly.ApiContext(api, dataset_id=dataset_id, project_id=project_id, project_meta=project_meta): ann_infos = api.annotation.download_batch(dataset_id, image_ids) """ # use context to avoid redundant API calls context = self._api.optimization_context context_dataset_id = context.get("dataset_id") project_meta = context.get("project_meta") project_id = context.get("project_id") if dataset_id != context_dataset_id: context["dataset_id"] = dataset_id project_id, project_meta = None, None if not isinstance(project_meta, ProjectMeta): if project_id is None: project_id = self._api.dataset.get_info_by_id(dataset_id).project_id context["project_id"] = project_id project_meta = ProjectMeta.from_json(self._api.project.get_meta(project_id)) context["project_meta"] = project_meta need_download_alpha_masks = False for obj_cls in project_meta.obj_classes: if obj_cls.geometry_type == AlphaMask: need_download_alpha_masks = True break id_to_ann = {} for batch in batched(image_ids): post_data = { ApiField.DATASET_ID: dataset_id, ApiField.IMAGE_IDS: batch, ApiField.WITH_CUSTOM_DATA: with_custom_data, ApiField.FORCE_METADATA_FOR_LINKS: force_metadata_for_links, ApiField.INTEGER_COORDS: False, } results = self._api.post("annotations.bulk.info", data=post_data).json() if need_download_alpha_masks is True: additonal_geometries = defaultdict(tuple) for ann_idx, ann_dict in enumerate(results): # check if there are any AlphaMask geometries in the batch for label_idx, label in enumerate( ann_dict[ApiField.ANNOTATION][AnnotationJsonFields.LABELS] ): if label[LabelJsonFields.GEOMETRY_TYPE] == AlphaMask.geometry_name(): figure_id = label[LabelJsonFields.ID] additonal_geometries[figure_id] = (ann_idx, label_idx) # if there are any AlphaMask geometries, download them separately and update the annotation if len(additonal_geometries) > 0: figure_ids = list(additonal_geometries.keys()) figures = self._api.image.figure.download_geometries_batch(figure_ids) for figure_id, geometry in zip(figure_ids, figures): ann_idx, label_idx = additonal_geometries[figure_id] results[ann_idx][ApiField.ANNOTATION][AnnotationJsonFields.LABELS][ label_idx ].update({BITMAP: geometry}) for ann_dict in results: # Convert annotation to pixel coordinate system ann_dict[ApiField.ANNOTATION] = Annotation._to_pixel_coordinate_system_json( ann_dict[ApiField.ANNOTATION] ) ann_info = self._convert_json_info(ann_dict) id_to_ann[ann_info.image_id] = ann_info if progress_cb is not None: progress_cb(len(batch)) ordered_results = [id_to_ann[image_id] for image_id in image_ids] return ordered_results
[docs] def download_json_batch( self, dataset_id: int, image_ids: List[int], progress_cb: Optional[Union[tqdm, Callable]] = None, force_metadata_for_links: Optional[bool] = True, ) -> List[Dict]: """ Get list of AnnotationInfos for given dataset ID from API. :param dataset_id: Dataset ID in Supervisely. :type dataset_id: int :param image_ids: List of integers. :type image_ids: List[int] :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm :param force_metadata_for_links: Force metadata for links. :type force_metadata_for_links: bool, optional :return: Information about Annotations. See :class:`info_sequence<info_sequence>` :rtype: :class:`List[Dict]` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() dataset_id = 254737 image_ids = [121236918, 121236919] p = tqdm(desc="Annotations downloaded: ", total=len(image_ids)) anns_jsons = api.annotation.download_json_batch(dataset_id, image_ids, progress_cb=p) # Output: # {"message": "progress", "event_type": "EventType.PROGRESS", "subtask": "Annotations downloaded: ", "current": 0, "total": 2, "timestamp": "2021-03-16T15:20:06.168Z", "level": "info"} # {"message": "progress", "event_type": "EventType.PROGRESS", "subtask": "Annotations downloaded: ", "current": 2, "total": 2, "timestamp": "2021-03-16T15:20:06.510Z", "level": "info"} """ results = self.download_batch( dataset_id=dataset_id, image_ids=image_ids, progress_cb=progress_cb, force_metadata_for_links=force_metadata_for_links, ) return [ann_info.annotation for ann_info in results]
[docs] def upload_path( self, img_id: int, ann_path: str, skip_bounds_validation: Optional[bool] = False, ) -> None: """ Loads an annotation from a given path to a given image ID in the API. :param img_id: Image ID in Supervisely. :type img_id: int :param ann_path: Path to annotation on host. :type ann_path: str :return: None :rtype: :class:`NoneType` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() image_id = 121236918 ann_path = '/home/admin/work/supervisely/example/ann.json' upl_path = api.annotation.upload_path(image_id, ann_path) """ self.upload_paths([img_id], [ann_path], skip_bounds_validation=skip_bounds_validation)
[docs] def upload_paths( self, img_ids: List[int], ann_paths: List[str], progress_cb: Optional[Union[tqdm, Callable]] = None, skip_bounds_validation: Optional[bool] = False, ) -> None: """ Loads an annotations from a given paths to a given images IDs in the API. Images IDs must be from one dataset. :param img_ids: Images IDs in Supervisely. :type img_ids: List[int] :param ann_paths: Paths to annotations on local machine. :type ann_paths: List[str] :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm or callable, optional :return: None :rtype: :class:`NoneType` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() img_ids = [121236918, 121236919] ann_pathes = ['/home/admin/work/supervisely/example/ann1.json', '/home/admin/work/supervisely/example/ann2.json'] upl_paths = api.annotation.upload_paths(img_ids, ann_pathes) # Optimizing the upload process by using the context to avoid redundant API calls. # Usefull when uploading a large number of annotations in one dataset. # 1. Download the project meta dataset_id = 254737 project_id = api.dataset.get_info_by_id(dataset_id).project_id project_meta = api.project.get_meta(project_id) # 2. Use the context to avoid redundant API calls with sly.ApiContext(api, dataset_id=dataset_id, project_id=project_id, project_meta=project_meta): api.annotation.upload_paths(img_ids, ann_pathes) """ def read_json(ann_path): with open(ann_path) as json_file: return json.load(json_file) self._upload_batch( read_json, img_ids, ann_paths, progress_cb, skip_bounds_validation=skip_bounds_validation, )
[docs] def upload_json( self, img_id: int, ann_json: Dict, skip_bounds_validation: Optional[bool] = False, ) -> None: """ Loads an annotation from dict to a given image ID in the API. :param img_id: Image ID in Supervisely. :type img_id: int :param ann_json: Annotation in JSON format. :type ann_json: dict :return: None :rtype: :class:`NoneType` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() image_id = 121236918 upl_json = api.annotation.upload_json(image_id, ann_json) """ self.upload_jsons([img_id], [ann_json], skip_bounds_validation=skip_bounds_validation)
[docs] def upload_jsons( self, img_ids: List[int], ann_jsons: List[Dict], progress_cb: Optional[Union[tqdm, Callable]] = None, skip_bounds_validation: Optional[bool] = False, ) -> None: """ Loads an annotations from dicts to a given images IDs in the API. Images IDs must be from one dataset. :param img_ids: Image ID in Supervisely. :type img_ids: List[int] :param ann_jsons: Annotation in JSON format. :type ann_jsons: List[dict] :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm or callable, optional :return: None :rtype: :class:`NoneType` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() img_ids = [121236918, 121236919] api.annotation.upload_jsons(img_ids, ann_jsons) # Optimizing the upload process by using the context to avoid redundant API calls. # Usefull when uploading a large number of annotations in one dataset. # 1. Download the project meta dataset_id = 254737 project_id = api.dataset.get_info_by_id(dataset_id).project_id project_meta = api.project.get_meta(project_id) # 2. Use the context to avoid redundant API calls with sly.ApiContext(api, dataset_id=dataset_id, project_id=project_id, project_meta=project_meta): api.annotation.upload_jsons(img_ids, ann_jsons) """ self._upload_batch( lambda x: x, img_ids, ann_jsons, progress_cb, skip_bounds_validation=skip_bounds_validation, )
[docs] def upload_ann( self, img_id: int, ann: Annotation, skip_bounds_validation: Optional[bool] = False, ) -> None: """ Loads an :class:`Annotation<supervisely.annotation.annotation.Annotation>` to a given image ID in the API. :param img_id: Image ID in Supervisely. :type img_id: int :param ann: Annotation object. :type ann: Annotation :return: None :rtype: :class:`NoneType` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() image_id = 121236918 upl_ann = api.annotation.upload_ann(image_id, ann) """ self.upload_anns([img_id], [ann], skip_bounds_validation=skip_bounds_validation)
[docs] def upload_anns( self, img_ids: List[int], anns: List[Annotation], progress_cb: Optional[Union[tqdm, Callable]] = None, skip_bounds_validation: Optional[bool] = False, ) -> None: """ Loads an :class:`Annotations<supervisely.annotation.annotation.Annotation>` to a given images IDs in the API. Images IDs must be from one dataset. :param img_ids: Image ID in Supervisely. :type img_ids: List[int] :param anns: List of Annotation objects. :type anns: List[Annotation] :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm or callable, optional :return: None :rtype: :class:`NoneType` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() img_ids = [121236918, 121236919] upl_anns = api.annotation.upload_anns(img_ids, [ann1, ann2]) # Optimizing the upload process by using the context to avoid redundant API calls. # Usefull when uploading a large number of annotations in one dataset. # 1. Download the project meta dataset_id = 254737 project_id = api.dataset.get_info_by_id(dataset_id).project_id project_meta = api.project.get_meta(project_id) # 2. Use the context to avoid redundant API calls with sly.ApiContext(api, dataset_id=dataset_id, project_id=project_id, project_meta=project_meta): api.annotation.upload_anns(img_ids, [ann1, ann2]) """ # img_ids from the same dataset self._upload_batch( Annotation.to_json, img_ids, anns, progress_cb, skip_bounds_validation=skip_bounds_validation, )
def _upload_batch( self, func_ann_to_json: Callable, img_ids: List[int], anns: List[Union[Dict, Annotation, str]], progress_cb=None, skip_bounds_validation: Optional[bool] = False, ): """ General method for uploading annotations to instance. Method is used in: upload_paths, upload_jsons, upload_anns :param func_ann_to_json: Function to convert annotation to json or read annotation from file. :type func_ann_to_json: callable :param img_ids: List of image IDs in Supervisely to which annotations will be uploaded. :type img_ids: List[int] :param anns: List of annotations. Can be json, Annotation object or path to annotation file. :type anns: List[Union[Dict, Annotation, str]] :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm or callable, optional :param skip_bounds_validation: Skip bounds validation. :type skip_bounds_validation: bool, optional :return: None :rtype: :class:`NoneType` """ # img_ids from the same dataset if len(img_ids) == 0: return if len(img_ids) != len(anns): raise RuntimeError( 'Can not match "img_ids" and "anns" lists, len(img_ids) != len(anns)' ) # use context to avoid redundant API calls dataset_id = self._api.image.get_info_by_id( img_ids[0], force_metadata_for_links=False ).dataset_id context = self._api.optimization_context context_dataset_id = context.get("dataset_id") project_id = context.get("project_id") project_meta = context.get("project_meta") if dataset_id != context_dataset_id: context["dataset_id"] = dataset_id project_id, project_meta = None, None if not isinstance(project_meta, ProjectMeta): if project_id is None: project_id = self._api.dataset.get_info_by_id(dataset_id).project_id context["project_id"] = project_id project_meta = ProjectMeta.from_json(self._api.project.get_meta(project_id)) context["project_meta"] = project_meta need_upload_alpha_masks = False for obj_cls in project_meta.obj_classes: if obj_cls.geometry_type == AlphaMask: need_upload_alpha_masks = True break for batch in batched(list(zip(img_ids, anns))): data = [] if need_upload_alpha_masks: special_figures = [] special_geometries = [] # check if there are any AlphaMask geometries in the batch for img_id, ann in batch: ann_json = func_ann_to_json(ann) ann_json = deepcopy(ann_json) # Avoid changing the original data ann_json = Annotation._to_subpixel_coordinate_system_json(ann_json) filtered_labels = [] if AnnotationJsonFields.LABELS not in ann_json: raise RuntimeError( f"Annotation JSON does not contain '{AnnotationJsonFields.LABELS}' field" ) for label_json in ann_json[AnnotationJsonFields.LABELS]: for key in [ LabelJsonFields.GEOMETRY_TYPE, LabelJsonFields.OBJ_CLASS_NAME, ]: if key not in label_json: raise RuntimeError(f"Label JSON does not contain '{key}' field") if label_json[LabelJsonFields.GEOMETRY_TYPE] == AlphaMask.geometry_name(): label_json.update({ApiField.ENTITY_ID: img_id}) obj_cls_name = label_json.get(LabelJsonFields.OBJ_CLASS_NAME) obj_cls = project_meta.get_obj_class(obj_cls_name) if obj_cls is None: raise RuntimeError( f"Object class '{obj_cls_name}' not found in project meta" ) # update obj class id in label json label_json[LabelJsonFields.OBJ_CLASS_ID] = obj_cls.sly_id geometry = label_json.pop( BITMAP ) # remove alpha mask geometry from label json special_geometries.append(geometry) special_figures.append(label_json) else: filtered_labels.append(label_json) if len(filtered_labels) != len(ann_json[AnnotationJsonFields.LABELS]): ann_json[AnnotationJsonFields.LABELS] = filtered_labels data.append({ApiField.IMAGE_ID: img_id, ApiField.ANNOTATION: ann_json}) else: for img_id, ann in batch: ann_json = func_ann_to_json(ann) ann_json = deepcopy(ann_json) # Avoid changing the original data ann_json = Annotation._to_subpixel_coordinate_system_json(ann_json) data.append({ApiField.IMAGE_ID: img_id, ApiField.ANNOTATION: ann_json}) self._api.post( "annotations.bulk.add", data={ ApiField.DATASET_ID: dataset_id, ApiField.ANNOTATIONS: data, ApiField.SKIP_BOUNDS_VALIDATION: skip_bounds_validation, }, ) if need_upload_alpha_masks: if len(special_figures) > 0: # 1. create figures json_body = { ApiField.DATASET_ID: dataset_id, ApiField.FIGURES: special_figures, ApiField.SKIP_BOUNDS_VALIDATION: skip_bounds_validation, } resp = self._api.post("figures.bulk.add", json_body) added_fig_ids = [resp_obj[ApiField.ID] for resp_obj in resp.json()] # 2. upload alpha mask geometries self._api.image.figure.upload_geometries_batch( added_fig_ids, special_geometries ) if progress_cb is not None: progress_cb(len(batch))
[docs] def get_info_by_id(self, id): """ get_info_by_id """ raise NotImplementedError("Method is not supported")
[docs] def get_info_by_name(self, parent_id, name): """ get_info_by_name """ raise NotImplementedError("Method is not supported")
[docs] def exists(self, parent_id, name): """ exists """ raise NotImplementedError("Method is not supported")
[docs] def get_free_name(self, parent_id, name): """ get_free_name """ raise NotImplementedError("Method is not supported")
def _add_sort_param(self, data): """ _add_sort_param """ return data
[docs] def copy_batch( self, src_image_ids: List[int], dst_image_ids: List[int], progress_cb: Optional[Union[tqdm, Callable]] = None, force_metadata_for_links: Optional[bool] = True, skip_bounds_validation: Optional[bool] = False, ) -> None: """ Copy annotations from one images IDs to another in API. :param src_image_ids: Images IDs in Supervisely. :type src_image_ids: List[int] :param dst_image_ids: Unique IDs of images in API. :type dst_image_ids: List[int] :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm or callable, optional :raises: :class:`RuntimeError`, if len(src_image_ids) != len(dst_image_ids) :return: None :rtype: :class:`NoneType` :Usage example: .. code-block:: python import supervisely as sly from tqdm import tqdm os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() src_ids = [121236918, 121236919] dst_ids = [547837053, 547837054] p = tqdm(desc="Annotations copy: ", total=len(src_ids)) copy_anns = api.annotation.copy_batch(src_ids, dst_ids, progress_cb=p) # Output: # {"message": "progress", "event_type": "EventType.PROGRESS", "subtask": "Annotations copy: ", "current": 0, "total": 2, "timestamp": "2021-03-16T15:24:31.286Z", "level": "info"} # {"message": "progress", "event_type": "EventType.PROGRESS", "subtask": "Annotations copy: ", "current": 2, "total": 2, "timestamp": "2021-03-16T15:24:31.288Z", "level": "info"} """ if len(src_image_ids) != len(dst_image_ids): raise RuntimeError( 'Can not match "src_image_ids" and "dst_image_ids" lists, ' "len(src_image_ids) != len(dst_image_ids)" ) if len(src_image_ids) == 0: return src_dataset_id = self._api.image.get_info_by_id(src_image_ids[0]).dataset_id for cur_batch in batched(list(zip(src_image_ids, dst_image_ids))): src_ids_batch, dst_ids_batch = zip(*cur_batch) ann_infos = self.download_batch( src_dataset_id, src_ids_batch, force_metadata_for_links=force_metadata_for_links, ) ann_jsons = [ann_info.annotation for ann_info in ann_infos] self.upload_jsons( dst_ids_batch, ann_jsons, skip_bounds_validation=skip_bounds_validation ) if progress_cb is not None: progress_cb(len(src_ids_batch))
[docs] def copy( self, src_image_id: int, dst_image_id: int, force_metadata_for_links: Optional[bool] = True, skip_bounds_validation: Optional[bool] = False, ) -> None: """ Copy annotation from one image ID to another image ID in API. :param src_image_id: Image ID in Supervisely. :type src_image_id: int :param dst_image_id: Image ID in Supervisely. :type dst_image_id: int :return: None :rtype: :class:`NoneType` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() src_id = 121236918 dst_id = 547837053 api.annotation.copy(src_id, dst_id) """ self.copy_batch( [src_image_id], [dst_image_id], force_metadata_for_links=force_metadata_for_links, skip_bounds_validation=skip_bounds_validation, )
[docs] def copy_batch_by_ids( self, src_image_ids: List[int], dst_image_ids: List[int], batch_size: Optional[int] = 50, save_source_date: Optional[bool] = True, ) -> None: """ Copy annotations from one images IDs to another images IDs in API. :param src_image_ids: Images IDs in Supervisely. :type src_image_ids: List[int] :param dst_image_ids: Images IDs in Supervisely. :type dst_image_ids: List[int] :return: None :rtype: :class:`NoneType` :raises: :class:`RuntimeError` if len(src_image_ids) != len(dst_image_ids) :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() src_ids = [121236918, 121236919] dst_ids = [547837053, 547837054] api.annotation.copy_batch_by_ids(src_ids, dst_ids) """ if len(src_image_ids) != len(dst_image_ids): raise RuntimeError( 'Can not match "src_image_ids" and "dst_image_ids" lists, ' "len(src_image_ids) != len(dst_image_ids)" ) if len(src_image_ids) == 0: return for cur_batch in batched(list(zip(src_image_ids, dst_image_ids)), batch_size=batch_size): src_ids_batch, dst_ids_batch = zip(*cur_batch) self._api.post( "annotations.bulk.copy", data={ "srcImageIds": src_ids_batch, "destImageIds": dst_ids_batch, "preserveSourceDate": save_source_date, }, )
def _convert_json_info(self, info: dict, skip_missing=True) -> AnnotationInfo: """ _convert_json_info """ res = super()._convert_json_info(info, skip_missing=skip_missing) return AnnotationInfo(**res._asdict())
[docs] def append_labels( self, image_id: int, labels: List[Label], skip_bounds_validation: Optional[bool] = False, ) -> None: """ Append labels to image with given ID in API. :param image_id: Image ID to append labels. :type image_id: int :param labels: List of labels to append. :type labels: List[Label] :return: None :rtype: :class:`NoneType` """ if len(labels) == 0: return alpha_mask_geometry = AlphaMask._impl_json_class_name() payload = [] special_geometries = {} for idx, label in enumerate(labels): _label_json = label.to_json() if isinstance(label.geometry, AlphaMask): _label_json.pop(alpha_mask_geometry) # remove alpha mask geometry from label json special_geometries[idx] = label.geometry.to_json()[BITMAP] else: _label_json["geometry"] = label.geometry.to_json() if "classId" not in _label_json: raise KeyError("Update project meta from server to get class id") payload.append(_label_json) added_ids = [] for batch_jsons in batched(payload, batch_size=100): resp = self._api.post( "figures.bulk.add", { ApiField.ENTITY_ID: image_id, ApiField.FIGURES: batch_jsons, ApiField.SKIP_BOUNDS_VALIDATION: skip_bounds_validation, }, ) for resp_obj in resp.json(): figure_id = resp_obj[ApiField.ID] added_ids.append(figure_id) # upload alpha mask geometries if len(special_geometries) > 0: fidure_ids = [added_ids[idx] for idx in special_geometries.keys()] self._api.image.figure.upload_geometries_batch(fidure_ids, special_geometries.values())
[docs] def get_label_by_id( self, label_id: int, project_meta: ProjectMeta, with_tags: Optional[bool] = True ) -> Label: """Returns Supervisely Label object by it's ID. :param label_id: ID of the label to get :type label_id: int :param project_meta: Supervisely ProjectMeta object :type project_meta: ProjectMeta :param with_tags: If True, tags will be added to the Label object :type with_tags: bool, optional :return: Supervisely Label object :rtype: Label :Usage example: .. code-block:: python import os from dotenv import load_dotenv import supervisely as sly # Load secrets and create API object from .env file (recommended) # Learn more here: https://developer.supervisely.com/getting-started/basics-of-authentication load_dotenv(os.path.expanduser("~/supervisely.env")) api = sly.Api.from_env() label_id = 121236918 project_id = 254737 project_meta = sly.ProjectMeta.from_json(api.project.get_meta(project_id)) label = api.annotation.get_label_by_id(label_id, project_meta) """ resp = self._api.get( "figures.info", {ApiField.ID: label_id, ApiField.DECOMPRESS_BITMAP: False} ) geometry = resp.json() class_id = geometry.get("classId") geometry["classTitle"] = project_meta.get_obj_class_by_id(class_id).name geometry.update(geometry.get("geometry")) geometry["tags"] = self._get_label_tags(label_id) if with_tags else [] return Label.from_json(geometry, project_meta)
def _get_label_tags(self, label_id: int) -> List[Dict[str, Any]]: """Returns tags of the label with given ID in JSON format. :param label_id: ID of the label to get tags :type label_id: int :return: list of tags in JSON format :rtype: List[Dict[str, Any]] :Usage example: .. code-block:: python import os from dotenv import load_dotenv import supervisely as sly # Load secrets and create API object from .env file (recommended) # Learn more here: https://developer.supervisely.com/getting-started/basics-of-authentication load_dotenv(os.path.expanduser("~/supervisely.env")) api = sly.Api.from_env() label_id = 121236918 tags_json = api.annotation.get_label_tags(label_id) """ return self._api.get("figures.tags.list", {ApiField.ID: label_id}).json()
[docs] def update_label(self, label_id: int, label: Label) -> None: """Updates label with given ID in Supervisely with new Label object. NOTE: This method only updates label's geometry and tags, not class title, etc. :param label_id: ID of the label to update :type label_id: int :param label: Supervisely Label object :type label: Label :Usage example: .. code-block:: python import os from dotenv import load_dotenv import supervisely as sly # Load secrets and create API object from .env file (recommended) # Learn more here: https://developer.supervisely.com/getting-started/basics-of-authentication load_dotenv(os.path.expanduser("~/supervisely.env")) api = sly.Api.from_env() new_label: sly.Label label_id = 121236918 api.annotation.update_label(label_id, new_label) """ self._api.post( "figures.editInfo", { ApiField.ID: label_id, ApiField.TAGS: [tag.to_json() for tag in label.tags], ApiField.GEOMETRY: label.geometry.to_json(), }, )
[docs] def update_label_priority(self, label_id: int, priority: int) -> None: """Updates label's priority with given ID in Supervisely. Priority increases with the number: a higher number indicates a higher priority. The higher priority means that the label will be displayed on top of the others. The lower priority means that the label will be displayed below the others. :param label_id: ID of the label to update :type label_id: int :param priority: New priority of the label :type priority: int :Usage example: .. code-block:: python import os from dotenv import load_dotenv import supervisely as sly # Load secrets and create API object from .env file (recommended) # Learn more here: https://developer.supervisely.com/getting-started/basics-of-authentication load_dotenv(os.path.expanduser("~/supervisely.env")) api = sly.Api.from_env() label_ids = [123, 456, 789] priorities = [1, 2, 3] for label_id, priority in zip(label_ids, priorities): api.annotation.update_label_priority(label_id, priority) # The label with ID 789 will be displayed on top of the others. # The label with ID 123 will be displayed below the others. """ self._api.post( "figures.priority.update", { ApiField.ID: label_id, ApiField.PRIORITY: priority, }, )
[docs] async def download_async( self, image_id: int, semaphore: Optional[asyncio.Semaphore] = None, with_custom_data: Optional[bool] = False, force_metadata_for_links: Optional[bool] = True, progress_cb: Optional[Union[tqdm, Callable]] = None, progress_cb_type: Literal["number", "size"] = "number", ) -> AnnotationInfo: """ Download AnnotationInfo by image ID from API. :param image_id: Image ID in Supervisely. :type image_id: int :param semaphore: Semaphore for limiting the number of simultaneous downloads. :type semaphore: asyncio.Semaphore, optional :param with_custom_data: Include custom data in the response. :type with_custom_data: bool, optional :param force_metadata_for_links: Force metadata for links. :type force_metadata_for_links: bool, optional :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm or callable, optional :param progress_cb_type: Type of progress callback. Can be "number" or "size". Default is "number". :type progress_cb_type: str, optional :return: Information about Annotation. See :class:`info_sequence<info_sequence>` :rtype: :class:`AnnotationInfo` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() image_id = 121236918 loop = sly.utils.get_or_create_event_loop() ann_info = loop.run_until_complete(api.annotation.download_async(image_id)) """ if semaphore is None: semaphore = self._api.get_default_semaphore() async with semaphore: response = await self._api.post_async( "annotations.info", { ApiField.IMAGE_ID: image_id, ApiField.WITH_CUSTOM_DATA: with_custom_data, ApiField.FORCE_METADATA_FOR_LINKS: force_metadata_for_links, ApiField.INTEGER_COORDS: False, }, ) if progress_cb is not None and progress_cb_type == "size": progress_cb(len(response.content)) result = response.json() # Convert annotation to pixel coordinate system result[ApiField.ANNOTATION] = Annotation._to_pixel_coordinate_system_json( result[ApiField.ANNOTATION] ) # check if there are any AlphaMask geometries in the batch additonal_geometries = defaultdict(int) labels = result[ApiField.ANNOTATION][AnnotationJsonFields.LABELS] for idx, label in enumerate(labels): if label[LabelJsonFields.GEOMETRY_TYPE] == AlphaMask.geometry_name(): figure_id = label[LabelJsonFields.ID] additonal_geometries[figure_id] = idx # if so, download them separately and update the annotation if len(additonal_geometries) > 0: figure_ids = list(additonal_geometries.keys()) figures = await self._api.image.figure.download_geometries_batch_async( figure_ids, ( progress_cb if progress_cb is not None and progress_cb_type == "size" else None ), semaphore=semaphore, ) for figure_id, geometry in zip(figure_ids, figures): label_idx = additonal_geometries[figure_id] labels[label_idx].update({BITMAP: geometry}) ann_info = self._convert_json_info(result) if progress_cb is not None and progress_cb_type == "number": progress_cb(1) return ann_info
[docs] async def download_batch_async( self, dataset_id: int, image_ids: List[int], semaphore: Optional[asyncio.Semaphore] = None, with_custom_data: Optional[bool] = False, force_metadata_for_links: Optional[bool] = True, progress_cb: Optional[Union[tqdm, Callable]] = None, progress_cb_type: Literal["number", "size"] = "number", ) -> List[AnnotationInfo]: """ Get list of AnnotationInfos for given dataset ID from API. :param dataset_id: Dataset ID in Supervisely. :type dataset_id: int :param image_ids: List of integers. :type image_ids: List[int] :param semaphore: Semaphore for limiting the number of simultaneous downloads. :type semaphore: asyncio.Semaphore, optional :param with_custom_data: Include custom data in the response. :type with_custom_data: bool, optional :param force_metadata_for_links: Force metadata for links. :type force_metadata_for_links: bool, optional :param progress_cb: Function for tracking download progress. Total should be equal to len(image_ids) or None. :type progress_cb: tqdm or callable, optional :param progress_cb_type: Type of progress callback. Can be "number" or "size". Default is "number". :type progress_cb_type: str, optional :return: Information about Annotations. See :class:`info_sequence<info_sequence>` :rtype: :class:`List[AnnotationInfo]` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() dataset_id = 254737 image_ids = [121236918, 121236919] pbar = tqdm(desc="Download annotations", total=len(image_ids)) loop = sly.utils.get_or_create_event_loop() ann_infos = loop.run_until_complete( api.annotation.download_batch_async(dataset_id, image_ids, progress_cb=pbar) ) """ # use context to avoid redundant API calls context = self._api.optimization_context context_dataset_id = context.get("dataset_id") project_meta = context.get("project_meta") project_id = context.get("project_id") if dataset_id != context_dataset_id: context["dataset_id"] = dataset_id project_id, project_meta = None, None if not isinstance(project_meta, ProjectMeta): if project_id is None: project_id = self._api.dataset.get_info_by_id(dataset_id).project_id context["project_id"] = project_id project_meta = ProjectMeta.from_json(self._api.project.get_meta(project_id)) context["project_meta"] = project_meta if semaphore is None: semaphore = self._api.get_default_semaphore() tasks = [] for image in image_ids: task = self.download_async( image_id=image, semaphore=semaphore, with_custom_data=with_custom_data, force_metadata_for_links=force_metadata_for_links, progress_cb=progress_cb, progress_cb_type=progress_cb_type, ) tasks.append(task) ann_infos = await asyncio.gather(*tasks) return ann_infos
[docs] async def download_bulk_async( self, dataset_id: int, image_ids: List[int], progress_cb: Optional[Union[tqdm, Callable]] = None, with_custom_data: Optional[bool] = False, force_metadata_for_links: Optional[bool] = True, semaphore: Optional[asyncio.Semaphore] = None, ) -> List[AnnotationInfo]: """ Get list of AnnotationInfos for given dataset ID from API. This method is optimized for downloading a large number of small size annotations with a single API call. :param dataset_id: Dataset ID in Supervisely. :type dataset_id: int :param image_ids: List of integers. :type image_ids: List[int] :param progress_cb: Function for tracking download progress. :type progress_cb: tqdm :param with_custom_data: Include custom data in the response. :type with_custom_data: bool, optional :param force_metadata_for_links: Force metadata for links. :type force_metadata_for_links: bool, optional :param semaphore: Semaphore for limiting the number of simultaneous downloads. :type semaphore: asyncio.Semaphore, optional :return: Information about Annotations. See :class:`info_sequence<info_sequence>` :rtype: :class:`List[AnnotationInfo]` :Usage example: .. code-block:: python import supervisely as sly os.environ['SERVER_ADDRESS'] = 'https://app.supervisely.com' os.environ['API_TOKEN'] = 'Your Supervisely API Token' api = sly.Api.from_env() dataset_id = 254737 image_ids = [121236918, 121236919] p = tqdm(desc="Annotations downloaded: ", total=len(image_ids)) ann_infos = await api.annotation.download_bulk_async(dataset_id, image_ids, progress_cb=p) Optimizing the download process by using the context to avoid redundant API calls.: # 1. Download the project meta project_id = api.dataset.get_info_by_id(dataset_id).project_id project_meta = api.project.get_meta(project_id) # 2. Use the context to avoid redundant API calls dataset_id = 254737 image_ids = [121236918, 121236919] with sly.ApiContext(api, dataset_id=dataset_id, project_id=project_id, project_meta=project_meta): ann_infos = await api.annotation.download_bulk_async(dataset_id, image_ids) """ if semaphore is None: semaphore = self._api.get_default_semaphore() # use context to avoid redundant API calls context = self._api.optimization_context context_dataset_id = context.get("dataset_id") project_meta = context.get("project_meta") project_id = context.get("project_id") if dataset_id != context_dataset_id: context["dataset_id"] = dataset_id project_id, project_meta = None, None if not isinstance(project_meta, ProjectMeta): if project_id is None: project_id = self._api.dataset.get_info_by_id(dataset_id).project_id context["project_id"] = project_id project_meta = ProjectMeta.from_json(self._api.project.get_meta(project_id)) context["project_meta"] = project_meta need_download_alpha_masks = False for obj_cls in project_meta.obj_classes: if obj_cls.geometry_type == AlphaMask: need_download_alpha_masks = True break id_to_ann = {} for batch in batched(image_ids): json_data = { ApiField.DATASET_ID: dataset_id, ApiField.IMAGE_IDS: batch, ApiField.WITH_CUSTOM_DATA: with_custom_data, ApiField.FORCE_METADATA_FOR_LINKS: force_metadata_for_links, ApiField.INTEGER_COORDS: False, } async with semaphore: results = await self._api.post_async("annotations.bulk.info", json=json_data) results = results.json() if need_download_alpha_masks is True: additonal_geometries = defaultdict(tuple) for ann_idx, ann_dict in enumerate(results): # check if there are any AlphaMask geometries in the batch for label_idx, label in enumerate( ann_dict[ApiField.ANNOTATION][AnnotationJsonFields.LABELS] ): if label[LabelJsonFields.GEOMETRY_TYPE] == AlphaMask.geometry_name(): figure_id = label[LabelJsonFields.ID] additonal_geometries[figure_id] = (ann_idx, label_idx) # if there are any AlphaMask geometries, download them separately and update the annotation if len(additonal_geometries) > 0: figure_ids = list(additonal_geometries.keys()) figures = await self._api.image.figure.download_geometries_batch_async( figure_ids, semaphore=semaphore ) for figure_id, geometry in zip(figure_ids, figures): ann_idx, label_idx = additonal_geometries[figure_id] results[ann_idx][ApiField.ANNOTATION][AnnotationJsonFields.LABELS][ label_idx ].update({BITMAP: geometry}) for ann_dict in results: # Convert annotation to pixel coordinate system ann_dict[ApiField.ANNOTATION] = Annotation._to_pixel_coordinate_system_json( ann_dict[ApiField.ANNOTATION] ) ann_info = self._convert_json_info(ann_dict) id_to_ann[ann_info.image_id] = ann_info if progress_cb is not None: progress_cb(len(batch)) ordered_results = [id_to_ann[image_id] for image_id in image_ids] return ordered_results